全国咨询热线:13601815220(同微信)
上海冕耀传动机械有限公司
全国咨询热线:13601815220(同微信)

行业资讯

首页> 行业资讯

上海值得推荐的RV减速机哪家好

Date: 2021-03-03 4:33:22 * Browse: 0

减速机出货快未来机器人的应用会更加广泛,因此也推动了减速机的发展,欢迎大家继续关注本网站。

上海升降机质量好?1.2国内外研究与应用现状1.2.1码垛机器人研究与应用现状将工业机器人技术应用于物品的搬运和码放最早的是日本和瑞典20世纪70年代末日本次将机器人技术用于码垛作业。1974年,瑞典ABB公司研发了全球台全电控式工业机器人IRB6,主要应用于工件的取放和物料的搬运闭。随着科学技术的进步,计算机应用技术、工业机器人技术和人工智能技术日新月异的发展,欧美、日韩等工业机器人发达的国家相继研发了各自的码垛机器人,如德国KUKA、瑞典ABB、日本FANUC和FUJI等,如图1.1和图1.2所示欧美、日韩等国的码垛机器人多为关节型机器人,一般拥有4~6个自由度,主要由安装底座、腰部、连杆机构、臂部、腕部和末端工作机构构成。机器人本体多使用重量轻结构强度高的铸铝材料和连杆关节型的结构样式,并采用有限元分析技术对机器人的结构形式做优化分析,使其拥有高的机械强度和减震效果,机器人的驱动系统大多使用数字化的交流伺服电机和大扭矩的RV减速机,从而极大的优化了机器人整机的结构,为应对不同的应用环境,专门研制了夹持式、叉板式、气动吸盘和电磁吸盘等多种用途的末端执行装置。发达国家工业机器人的控制系统均使用开放式的PC控制系统,以此实现码垛机器人工作过程的高效、和稳定的特性。欧美等发达国家以先进的机器人技术和完善的机器人产业链为依托,使码垛机器人的应用在众多行业中得到普及。瑞士、奥地利和挪威等欧洲各国的酿酒企业、食品加工企业和咖啡生产企业大多使用KUKA码垛机器人,通过特制的末端执行机构准确地完成纸盒、料箱和托盘的搬运码垛作业,不仅降低了工人的劳动强度而且提高了产量和产品的质量。美国著名的润滑油制造企业JTM公司使用Motoman的6轴码垛机器人进行箱装润滑油和桶装润滑油的码垛作业,使机器人码垛每年的工作量提高到人工码垛量的2倍。EricHemmingson提出ABBFlexPalletizerIRB640码垛机器人凭借其强大的S4C控制系统和独特的结构形式广泛应用于食品和饮料行业,出色的完成了箱装、袋装物品的搬运和码垛作业[[1i1a我国工业机器人技术的研究和应用起步比较晚,开始于1970年代,由于受到那个时代社会经济制度等相关因素的严重影响,进展十分缓慢,研究和应用层次也很低。八十年代以后,随着经济体制改革的不断推进,我国自主工业机器人技术的研究和应用才取得一些成果,码垛机器人技术的应用也得到了飞快的发展。

机器人减速机涡轮精密减速器在工业机器人中的另一作用是传递更大的扭矩当负载较大时,一味提高伺服电机的功率是很不划算的,可以在适宜的速度范围内通过减速器来提高输出扭矩。此外,伺服电机在低频运转下容易发热和出现低频振动,对于长时间和周期性工作的工业机器人这都不利于确保其、可靠地运行。  精密减速机的存在使伺服电机在一个合适的速度下运转,并地将转速降到工业机器人各部位需要的速度,提高机械体刚性的同时输出更大的力矩。与通用减速器相比,机器人关节减速机要求具有传动链短、体积小、功率大、质量轻和易于控制等特点。相比于谐波减速机,RV减速机具有更高的刚度和回转精度。因此在关节型机器人中,一般将RV减速机放置在机座、大臂、肩部等重负载的位置,而将谐波减速机放置在小臂、腕部或手部,行星减速机一般用在直角坐标机器人上。同时,RV减速机比机器人中常用的谐波传动具有高得多的疲劳强度、刚度和寿命,而且回差精度稳定,不像谐波传动随着使用时间的增长,运动精度就会显著降低,故目前许多国家的高精度机器人传动多采用RV减速器。  以上就是机器人用rv减速器的相关介绍,希望可以帮助到大家,rv减速器具有体积小,功率大,质量轻,易于控制等特点,是机器人的重要核心部件之一,因此机器人生产商在选择rv减速器时,一定要选择优质的减速器生产品牌。。

上海针轮摆线减速机定制  以上就是机器人用rv减速机的作用,大家能够了解多少呢,rv减速机可以提高机器人的重复精度,有效地协调机器人部件的运转速度,在确保机器人正常生产的同时,提升机器人的工作质量,rv减速机是工业机器人不可缺少的重要部件。

rv行星减速机存在数值上偏差的主要原因是在刚体动力学模型及刚柔祸合动力学模型建立时并未考虑到三轴电机质量以及转动质量的影响此外,可以看到,由于23轴的重力项与位置有关,所以在机器人启停时的驱动力矩并不为零,这一方面对电机启停时的性能提出了更高的要求,另一方面,也会影响到机器人运动过程中的总能耗,所以考虑在进行轨迹规划时对机器人运动的始末点进行优化,实现真正的能耗最优轨迹规划。??本章首先利用机器人双平行四边形结构的几何特性,运用几何法建立了机器人的正、逆运动学,求导后推导出了雅可比矩阵,建立了关节空间与笛卡尔空间下位移、速度之间的关系,利用Matlab绘制出机器人工作空间在XoZ平面下的投影。之后通过对机器人质心位置的更准确的计算,利用第二类Lagarange方程建立了更为的机器人的刚体动力学方程。然后,对关节柔性加以考虑,将机器人关节等效为扭簧模型,建立了机器人刚柔祸合动力学模型。最后,设计测试轨迹,通过Adams建立虚拟样机模型对建立的模型进行测试,验证了模型建立的准确性。本章对运动学及动力学模型的建立为后续的轨迹规划及控制系统的设计工作打下了基础。??。

其他类型的减速机多数需要与交叉滚子轴承配套使用,而本设计采用RV减速机自身配备一体化主轴承,具有结构紧凑,可靠性高,稳定性好,能承受较大的倾覆力矩,安装方便等优点综上所述,结合码垛机器人的电机选择以及减速机本身具有大刚度、承载能力高、传动效率高等优点,码垛机器人腰关节驱动系统选用减速机。2.2电机及减速器的选型计算机器人对于伺服控制电动机必须要具备的基本条件是:电机应具有相对较低的转动惯量,单位时间内能够提供更大的瞬时功率,低速运转较为平稳,调速范围大,力矩波动小,同时在特殊情况时,比如在电机堵转以及伺服定位时依旧能够提供相对来说比较大的力矩,外形小巧美观,能够较好较强的适应环境,便于维护,且需要具备全封闭构造。理论上来讲需根据电机轴上两种不同的负载情况来选择适当的伺服电机,分别是转动惯量负载和阻尼转矩负载,这两种负载在进行选型时都需要计算准确,创门的值应满足以下几个条件(1)电机处于空载运行状态,加在伺服电机轴上的负载转矩不应高于或低于在电机连续额定转矩的上下限,也就是意味着,电机的负载转矩需要处于转矩速率特性曲线的约定范围之内。(2)电机所承受的负载转矩,以及加载、过载时间都不应超出该电机相关设计指标的要求,(3)电机因加、减速所增加的附加转矩不应超出加减速区许可范围,(4)频繁起停以及负载呈现周期性的变化,在一个周期中电机的额定转矩必须要大于它的转矩平均二次方根值,(5)一般情况下,在负载惯量接近或超出转子惯量的五倍的条件下,电机的灵敏度和整个伺服系统的响应时间会受到加在电机轴上的负载惯量的影响。因为腰关节在转动时承受着整个码垛机器人的重量,所以其旋转时的负载转动惯量是整个机器人在旋转时的转动惯量,这一点在计算时不能有任何遗漏。?本设计对惯量比值的要求是伺服电机惯量与负载惯量的比值小于15,满足此条件,则视为成功进行了惯量的分配。码垛机器人的大臂、小臂、腕部、及其所抓取的重物,构成了机器人腰部电机所需要承载的力矩,力矩的主要成分为齿轮摩擦和滚动摩擦力矩,设腰关节轴加速度的值为al,速度为n1,腰关节轴在接收到斜坡函数给定的加速指令后,加速度与电机轴所受到的加速力矩成正相关:?为保证电机工作在安全范围内,原则上加速力矩不可大于电机的瞬时转矩值。??伺服电机能为减速机末端所提供的力矩须不能小于电机带负载启动时所需要的启动转矩,并且此关节的额定回转角速度要小于等于伺服电机为减速机末端所提供的转速。所以应当依据以上条件设置合适的电动机与减速器。2.3本章小结本章主要介绍了码垛机器人驱动方式的选择,伺服电机与减速器的种类及特点,以及它们的选型计算方法,并且为接下来实验设备的选择提供了依据。

可是该类减速器制造要求精度高,应用于要求结构比较紧凑的传动机构(2)RV减速器该类减速器传动机构包含有两级行星减速机构,级是由渐开线齿轮构成的,第二级是由摆线齿轮构成的,属于闭式差动轮系,图2.4是其结构原理图。太阳轮1同动力输入端连接,若轮1沿着逆时针方向转动,将会带动3个沿圆周方向均布的行星轮2绕自身中心轴顺时针方向转动,此外还会绕轮1轴心公转,曲柄轴3同轮2相连并以相同速度旋转,两个均布在圆周方向的摆线轮4同轴3铰接,并同固定安装的针轮啮合,运动过程中,轮4将会绕针轮轴线公转,同时也会绕自身轴线沿逆时针方向自转。行星架6为装置输出机构,通过安装在其内部的3对曲柄轴支撑轴承提供输出力矩,将轮4的自转矢量按照1:1比例输出。该类减速器优势为:传动比调整区间大,可提供非常大的扭转刚度,因为行星架6左右两端都含有支承,其左端圆盘刚度较大,同负载机构以螺栓相连,其扭转刚度要比普通摆线减速机大出很多。在额定力矩条件下工作时,具有较小的弹性回差,若设计规范,并能确保有效的加工及安装精度,便能使减速器具有较高精度及非常小的回转间隙,工作效率较高,外形较小,并能传递更大的力矩和功率,因为该类减速机含有两级,级使用3个行星轮,尤其是第二级,摆线针轮属于硬齿面多齿啮合,如此使其拥有更大的承载力矩,并可减小自身体积,此外从设计角度出发,将传动机构放置在支撑轴承内,会明显减小装置轴向尺寸。?图2.4中,1为太阳轮,2为行星轮,3为偏心轴,4为摆线轮,_5为针齿,6为输出轴,7为针齿壳。(3)谐波减速机同行星齿轮传动一样,谐波齿轮传动也是由三个基本构件所组成:固定的内齿刚轮、柔轮、(即其基体与从动轴相连的弹性薄壁套杯“在柔轮开端的母线上做出齿圈”)和使柔轮发生径向变形的波发生器。在刚轮和柔轮上切出模数相同的轮齿,但齿数不同,即柔轮的齿数比刚轮的齿数少两个。谐波传动的齿数差表征柔轮的变形波数。在自由状态(无发生器)下,两轮处于同心位置,而刚轮和柔轮的各齿间隙均匀。

根据其产品特点,RS系列产品适用于很多需要较大承重同时可以可靠、定位的变位机,转台等应用场合如果您对RS系列减速机有兴趣,欢迎随时和我们咨询。。

根据腰部底座所设计的结构可以知道所要克服的转矩为轴承的滚动摩擦,但由于底座所承受压力较大,所以所克服的转矩数值也相对较大根据式(3.37)可知,当水平丝杠螺母位于前极限,竖直丝杠螺母位于最上极限时码垛机器人腰部处的转动惯量。在UG的三维模型中使用测量体功能,计算出该位形下码垛机器人底座及手臂整体的转动惯量为J=3.58E8kg·mm2。为了保证码垛机器人运行性能和定位精度,选择性能较好的松下伺服电机。根据上一小节中的转矩曲线和测量所得的转动惯量,选择高惯量、中容量的伺服电机,所选型号为MHME402S1,其为带有绝对式编码器和抱闸的交流伺服电机。并且为了保证电机与负载的转动惯量相匹配,选用高精度帝人RV减速机,型号为160E,减速比129。减速机输出转动惯量为:J=n2·J0(J0为电机转动惯量)。下表列出了此型号电机的主要参数:???运动周期变化对码垛机器人性能的影响上一节中针对给定工作周期(6s),给定工作负载(50kg)对码垛机器人进行了性能分析。但在实际应用中,工作负载可能发生变化,工作周期也可能会随之发生改变。故本小节针对工作周期发生改变进行动力学分析,主要分析对象为上大臂。对上大臂模型进行如下分析:一、工作负载为50kg,工作周期为6s(上大臂绕腰部转动时间3s),得到上大臂质心速度、质心加速度、平动动量曲线图如下图3.8所示。

  同时,rv减速机较工业机器人中常用的谐波传动具有高得多的疲劳强度、刚度和寿命,而且回差精度稳定,不像谐波传动那样随着使用时间增长运动精度就会显著降低,故世界上许多国家高精度工业机器人传动多采用RV减速器,因此,该种RV减速器在先进工业机器人传动中有逐渐取代谐波减速器的发展趋势  关于机器人rv减速机的重要作用就介绍这些内容,如今的生产设备已经升级到更高的层次,在人口逐渐老龄化的今天,机器人投入生产是社会发展的必然趋势,因此很多人都开始接触机器人行业,相信这会是未来一个非常火的行业。。

|>