全国咨询热线:13601815220(同微信)
上海冕耀传动机械有限公司
全国咨询热线:13601815220(同微信)

行业资讯

首页> 行业资讯

上海价格便宜RV减速机价格

Date: 2021-03-21 0:36:30 * Browse: 0

工作台齿轮传动根据式(3.37)可知,当水平丝杠螺母位于前极限,竖直丝杠螺母位于最上极限时码垛机器人腰部处的转动惯量在UG的三维模型中使用测量体功能,计算出该位形下码垛机器人底座及手臂整体的转动惯量为J=3.58E8kg·mm2。为了保证码垛机器人运行性能和定位精度,选择性能较好的松下伺服电机。根据上一小节中的转矩曲线和测量所得的转动惯量,选择高惯量、中容量的伺服电机,所选型号为MHME402S1,其为带有绝对式编码器和抱闸的交流伺服电机。并且为了保证电机与负载的转动惯量相匹配,选用高精度帝人RV减速机,型号为160E,减速比129。减速机输出转动惯量为:J=n2·J0(J0为电机转动惯量)。下表列出了此型号电机的主要参数:???运动周期变化对码垛机器人性能的影响上一节中针对给定工作周期(6s),给定工作负载(50kg)对码垛机器人进行了性能分析。但在实际应用中,工作负载可能发生变化,工作周期也可能会随之发生改变。故本小节针对工作周期发生改变进行动力学分析,主要分析对象为上大臂。对上大臂模型进行如下分析:一、工作负载为50kg,工作周期为6s(上大臂绕腰部转动时间3s),得到上大臂质心速度、质心加速度、平动动量曲线图如下图3.8所示。?二、工作负载为50kg,工作周期为4s(上大臂绕腰部转动时间2s),得到上大臂质心速度、质心加速度、平动动量曲线图如下图3.9所示。

上海蜗轮减速机哪家好  以上就是机器人用rv减速机的作用,大家能够了解多少呢,rv减速机可以提高机器人的重复精度,有效地协调机器人部件的运转速度,在确保机器人正常生产的同时,提升机器人的工作质量,rv减速机是工业机器人不可缺少的重要部件。

上海换向器性价比减速器之间是否存在取代关系:正方观点:RV减速器较机器人中常用的谐波传动具有高得多的疲劳强度、刚度和寿命,而且回差精度稳定,不像谐波传动那样随着使用时间增长运动精度就会显著降低所以许多国家的高精度机器人传动多采用RV减速器,因此,RV减速器在先进机器人传动中有逐渐取代谐波减速器的发展趋势。这些产品在某些型号上确实存在替代关系,但这几类减速器只能实现部分替代。绝大部分情况下,各类减速器很难实现替换,比如在速比方面,谐波和RV的速比都要远远大于行星,所以小速比领域是行星的天下。当然行星的速比是可以做大的,但是很难去替换谐波和RV。又比如刚性方面,行星和RV的刚性要好于谐波,在体现刚性的使用工况下,谐波很难有好的表现。谐波减速器的特点是轻和小,在这方面,行星和RV却很难做到。所以各类减速器只能在一部分情况下可实现替换,但是如果一种产品全方位替换另一种产品是不现实的。反方观点:各类减速器之间不能相互取代,而是一种互补的关系。RV和谐波这两种传动有互补性,但也不排除结构设计优化和制造工艺突破后,在中低载荷应用领域形成局部竞争。END。

上海转向器  工业机器人减速机主要类型:  RV减速机  RV减速机是在摆线针轮传动基础上发展起来的,具有二级减速和中心圆盘支承结构自1986年投入市场以来,因其传动比大、传动效率高、运动精度高、回差小、低振动、刚性大和高可靠性等优点是机器人的“御用”减速机。  谐波减速机  谐波减速机由三部分组成:谐波发生器、柔性论和刚轮,其工作原理是由谐波发生器使柔轮产生可控的弹性变形,靠柔轮与刚轮啮合来传递动力,并达到减速的目的,按照波发生器的不同有凸轮式、滚轮式和偏心盘式。  行星减速机  行星顾名思义行星减速机就是有三个行星轮围绕一个太阳轮旋转的减速机。行星减速机体积小、重量轻,承载能力高,使用寿命长、运转平稳,噪声低。具有功率分流、多齿啮合独用的特性,是一种用途广泛的工业产品,其性能可与其它军品级行星减速机产品相媲美,却有着工业级产品的价格,被应用于广泛的工业场合。  以上介绍的就是工业机器人减速机主要类型,在选择减速机的时候要根据机器人的实际用途来定,才能达到预期的使用效果,否则只会适得其反。未来机器人的应用会更加广泛,因此也推动了减速机的发展,欢迎大家继续关注本网站。。

滚珠丝杠机器人其特点在于结构简单,体积小,质量轻,传动范围大,同时啮合的齿数多,承载能力大,运动精度高,运动平稳,齿侧间隙可以调整,传动效率也高,可实现高增速运动以及差速传动目前,工业机器人多应用于RV减速机,因为其承受过载能力强,传动速度大,扭矩也大。而且码垛机器人臂展很长,所以在作业时要求的倾覆力也就大,如果使用其他减速机可能还需要配备其他的机构(比如轴承),所以RV减速机适合应用于此种情况。正是由于RV减速机显著的特点匹配了工业机器人的需求,使得目前RV减速机在工业领域中使用广泛。因此,本文也选择RV减速机。???。

机器人刚柔藕合动力学模型验证与分析1机器人虚拟样机模型的建立为了验证动力学模型的准确性,本文采用Adams建立机器人的虚拟样机模型,并对机器人进行动力学分析首先将机器人的Solidworks三维模型导入至Adams中,忽略螺钉、垫片等对系统影响较小的零件,仅保留伺服电机外形结构,简化各轴RV减速机,之后在各轴添加相应的约束、运动副及驱动(特别地,在三个电机轴处添加扭簧力以模拟关节柔性),最后在末端添加130kg载荷,即完成了对机器人虚拟样机模型的建立,如图2-4所示。?同时,根据式(2-6)(2-14)所得结果,在Matlab中编辑程序,实现对机器人刚体动力学及刚柔祸合动力学方程的求解,通过与Adams中虚拟样机模型的仿真结果进行对比来验证模型建立的准确性。2动力学模型验证及柔性影响分析为了对动力学模型进行验证,首先需要设计测试轨迹,然后对在相同轨迹下的动力学求解结果进行对比。测试路径如图2-5所示。?根据上述测试轨迹,使用Matlab对刚体动力学及刚柔祸合动力学进行求解,同时使用Adams对测试轨迹进行仿真分析,对比结果如图2-6、图2-7和图2-8所示。?通过对比可以看出,刚体动力学模型与刚柔祸合动力学模型的仿真结果与Adams仿真结果总体趋势基本一致,模型建立基本准确。但是在速度及加速度较大处,结果差异较大,1轴力矩的刚体动力学误差为15.71%,刚柔祸合动力学误差为3.33%?2轴力矩的刚体动力学误差为_5._51%,刚柔祸合动力学误差为4.32%?3轴力矩的刚体动力学误差为12._5%,刚柔祸合动力学误差为3.13%。显然,刚柔祸合动力学模型更,更接近于实际情况,说明柔性的存在对系统动力学的影响确实不容忽略。存在数值上偏差的主要原因是在刚体动力学模型及刚柔祸合动力学模型建立时并未考虑到三轴电机质量以及转动质量的影响。此外,可以看到,由于23轴的重力项与位置有关,所以在机器人启停时的驱动力矩并不为零,这一方面对电机启停时的性能提出了更高的要求,另一方面,也会影响到机器人运动过程中的总能耗,所以考虑在进行轨迹规划时对机器人运动的始末点进行优化,实现真正的能耗最优轨迹规划。

这张动图向我们展示了一个非常惊奇的动作,那就是这个机器人挥舞着机械臂,将一片豌豆一分为二,它的速度极快,刀口利落,从而带给我们一个非常直观的感受,令人称奇那么问题来了,机器人是如何做到快、准、狠的呢?这全靠它的核心部件——减速机!减速器是工业机器人运动的核心部件:精密减速机。这是一种精密的动力传达机构,其利用齿轮的速度转换器,将电机的回转数减速到所要的回转数,并得到较大转矩的装置,从而降低转速,增加转矩。为什么工业机器人需要用到减速机?工业机器人的动力源一般为交流伺服电机,因为由脉冲信号驱动,其伺服电机本身就可以实现调速,为什么工业机器人还需要减速机呢?工业机器人通常执行重复的动作,以完成相同的工序;为保证工业机器人在生产中能够可靠地完成工序任务,并确保工艺质量,对工业机器人的定位精度和重复定位精度要求很高。因此,提高和确保工业机器人的精度就需要采用RV减速器或谐波减速器。精密减速机在工业机器人中的另一作用是传递更大的扭矩。当负载较大时,一味提高伺服电机的功率是很不划算的,可以在适宜的速度范围内通过减速器来提高输出扭矩。此外,伺服电机在低频运转下容易发热和出现低频振动,对于长时间和周期性工作的工业机器人这都不利于确保其、可靠地运行。精密减速机的存在使伺服电机在一个合适的速度下运转,并地将转速降到工业机器人各部位需要的速度,提高机械体刚性的同时输出更大的力矩。与通用减速机相比,机器人关节减速机要求具有传动链短、体积小、功率大、质量轻和易于控制等特点。大量应用在关节型机器人上的减速机主要有两类:RV减速机和谐波减速机。

首先将机器人的Solidworks三维模型导入至Adams中,忽略螺钉、垫片等对系统影响较小的零件,仅保留伺服电机外形结构,简化各轴RV减速机,之后在各轴添加相应的约束、运动副及驱动(特别地,在三个电机轴处添加扭簧力以模拟关节柔性),最后在末端添加130kg载荷,即完成了对机器人虚拟样机模型的建立,如图2-4所示?同时,根据式(2-6)(2-14)所得结果,在Matlab中编辑程序,实现对机器人刚体动力学及刚柔祸合动力学方程的求解,通过与Adams中虚拟样机模型的仿真结果进行对比来验证模型建立的准确性。2.4.2动力学模型验证及柔性影响分析?为了对动力学模型进行验证,首先需要设计测试轨迹,然后对在相同轨迹下的动力学求解结果进行对比。测试路径如图2-5所示。??通过对比可以看出,刚体动力学模型与刚柔祸合动力学模型的仿真结果与Adams仿真结果总体趋势基本一致,模型建立基本准确。但是在速度及加速度较大处,结果差异较大,1轴力矩的刚体动力学误差为15.71%,刚柔祸合动力学误差为3.33%?2轴力矩的刚体动力学误差为5.51%,刚柔祸合动力学误差为4.32%?3轴力矩的刚体动力学误差为12.5%,刚柔祸合动力学误差为3.13%。显然,刚柔祸合动力学模型更,更接近于实际情况,说明柔性的存在对系统动力学的影响确实不容忽略。存在数值上偏差的主要原因是在刚体动力学模型及刚柔祸合动力学模型建立时并未考虑到三轴电机质量以及转动惯量的影响。??此外,可以看到,由于23轴的重力项与位置有关,所以在机器人启停时的驱动力矩并不为零,这一方面对电机启停时的性能提出了更高的要求,另一方面,也会影响到机器人运动过程中的总能耗,所以考虑在进行轨迹规划时对机器人运动的始末点进行优化,实现“真正”的能耗最优轨迹规划。本章首先利用机器人双平行四边形结构的几何特性,运用几何法建立了机器人的正、逆运动学,求导后推导出了雅可比矩阵,建立了关节空间与笛卡尔空间下位移、速度之间的关系,利用Matlab绘制出机器人工作空间在XoZ平面下的投影。之后通过对机器人质心位置的更准确的计算,利用第二类Lagarange方程建立了更为的机器人的刚体动力学方程。

其优点如下:精度高、刚性强、负载大、效率高、速比广、寿命长、惯量低、振动小、噪音低、发热小3RV减速机(如图3-2c所示为RV-C型,另有RV-E型):基于摆线针轮传动方式的新型减速机,发展始于80年代日本,国内90年代开始相关研究,但是目前是日本做的。该减速机同时啮合齿轮数较多,其提供高减速比的同时精度是所有减速机里面的,可以做到1弧分以内。其特点如下:轻量化、小型化、高刚度、抗倾覆能力强、耐过载、齿隙小、振动小、惯性小、加速性能好、运转平稳、精度高。?由于码垛机器人的空间定位精度取决于腰部转座周围的三个驱动装置,为保证更高的精度要求,所以我们决定使用RV减速机。手座部分的驱动装置我们采用质量较轻谐波减速机。?。

  rv减速器的存在使伺服电机在一个合适的速度下运转,并地将转速降到工业机器人各部位需要的速度,提高机械体刚性的同时输出更大的力矩与通用减速器相比,工业机器人关节减速器要求具有传动链短、体积小、功率大、质量轻和易于控制等特点。  同时,rv减速机较工业机器人中常用的谐波传动具有高得多的疲劳强度、刚度和寿命,而且回差精度稳定,不像谐波传动那样随着使用时间增长运动精度就会显著降低,故世界上许多国家高精度工业机器人传动多采用RV减速器,因此,该种RV减速器在先进工业机器人传动中有逐渐取代谐波减速器的发展趋势。  关于机器人rv减速机的重要作用就介绍这些内容,如今的生产设备已经升级到更高的层次,在人口逐渐老龄化的今天,机器人投入生产是社会发展的必然趋势,因此很多人都开始接触机器人行业,相信这会是未来一个非常火的行业。。

|>